

Optimisation of value chains for biogas production in Denmark Sven G. Sommer Project Coordinator

AARHUS UNIVERSITY

DIOCHAIN Optimisation of value chains for biogas production in Denmark.

1st Generation Biochain model

DIOCHAIN Optimisation of value chains for biogas production in Denmark

1st Generation Biochain model – economy, engineering, biology,

agronomy

Teedstock IIIIX		70 Wet Weight	
	PSSB-0	PSSB-12.5	PSSB-25
Pig slurry	100	87.5	75
Sugar beet	0	12.5	25

 \sim DIOCNAIN Optimisation of value chains for biogas production in Denmark.

Trade off between rising operational and transport costs against reduced capital costs

Cost contribution and scale 12½% sugar beet

Large scale biogas plant in DK based on manure and upgrading biogas to grid (BioChain case)

1st Generation Biochain model

Economics results from sugar beet case study

- Profitability is significantly increased when adding 12½ % sugar beet to the manure input
- For a large plant the upgrade of natural gas to the grid is a profitable option
- The income of the biogas plant in the case is dominated by the biogas support payments
- Economies of scale is found for size of biogas plant capital cost but increasing transport costs of inputs tend to limit the benefit of scale
- Positive scale effects only dominate the net result for pure manure (no sugar beets – due to transport and handling costs)

New method to characterise biomass

Overestimated VS based methane potentials

Organic matter (Volatile solids) is determined as the amount of DM (oven drying 105°C, APHA) emitted when heating the DM at 500°C

24hr : Standard method

Drying causes loss of volatile organic component:

- Slurry: Organic acids
- Slurry and ensiled organic matter: Organic acids and alcohols

Adding a base:

- Reduce emission of organic acids
- Problem crystal water formation
- Problem: Don't affect alcohol volatilization

 $1gCH_3COOH + 0.67$ g NaOH $\rightarrow 0.30gH_2O + 1.37gCH_3COONa$

	ash g/kg	ash g/kg
	Standard method	Increasing pH
Silage 1	44,5	81,0
Silage 2	45,6	72,5
Silage 3	58,5	96,9
Silage 4	41,0	76,2
Silage 5	51,0	67,3

We suggest COD- based methane potentials for silage biomass

TBMP of (CH₄ m³/ton)

	Theoretical	Theoretical	
	BMP	BMP	
	(VS based)	(COD based)	
	CH4 NL/g VS-		
	1	CH4NL/COD g	g COD/g VS
VFA	0.37	0.35	1,07
protein	0.50	0.35	1,42
Carbohydra			
te	0.41	0.35	1,19
Lipid	1.01	0.35	2,90
Ethanol	0.73	0.35	2,09

Using COD, Theoretical BMP can be assessed The problem is that samples need to be diluted much, and due to sample heterogeneity the result may not reflect manure composition

GHG emission model

- document effects of AD for GHG inventory
- CH₄ emissions during storage of digestate:
 - new Arrhenius parameters, VS composition

N₂O emissions from field-applied digestate:
derived from VS/water potential relationships

DIOCNAIN Optimisation of value chains for biogas production in Denmark

Conclusion

- Joint model development: Efficient training of inter facultary PhD and Post doc
- New interrelated models for assessing biomass management (Chain approach) –value chain
- New methods to characterise biomass
- New model for assessing GHG emission as affected by biogas digestion
- Collaboration with international partners

DIOCHAIN Optimisation of value chains for biogas production in Denmark